Package index
-
pangoling
pangoling-package
- pangoling: Access to Large Language Model Predictions
-
causal_next_tokens_pred_tbl()
- Generate next tokens after a context and their predictability using a causal transformer model
-
causal_pred_mats()
- Generate a list of predictability matrices using a causal transformer model
-
causal_words_pred()
causal_tokens_pred_lst()
causal_targets_pred()
- Compute predictability using a causal transformer model
-
masked_targets_pred()
- Get the predictability of a target word (or phrase) given a left and right context
-
masked_tokens_pred_tbl()
- Get the possible tokens and their log probabilities for each mask in a sentence
-
causal_config()
- Returns the configuration of a causal model
-
causal_preload()
- Preloads a causal language model
-
masked_config()
- Returns the configuration of a masked model
-
masked_preload()
- Preloads a masked language model
-
install_py_pangoling()
- Install the Python packages needed for
pangoling
-
set_cache_folder()
- Set cache folder for HuggingFace transformers
-
ntokens()
- The number of tokens in a string or vector of strings
-
tokenize_lst()
- Tokenize an input
-
transformer_vocab()
- Returns the vocabulary of a model
-
perplexity_calc()
- Calculates perplexity
-
df_jaeger14
- Self-Paced Reading Dataset on Chinese Relative Clauses
-
df_sent
- Example dataset: Two word-by-word tokenized sentences