,

between is a thin wrapper for the between function of data.table::between. It is equivalent to x >= lower & x <= upper when incbounds=TRUE, or x > lower & y < upper when FALSE. In comparison with dplyr::between, it doesn't loose the class of its argument, and it's more appropriate for manipulating the column .sample. For more information and the description of the arguments, see data.table::between.

Examples


library(dplyr)
#> 
#> Attaching package: ‘dplyr’
#> The following objects are masked from ‘package:eeguana’:
#> 
#>     across, between, c_across
#> The following objects are masked from ‘package:stats’:
#> 
#>     filter, lag
#> The following objects are masked from ‘package:base’:
#> 
#>     intersect, setdiff, setequal, union
data_faces_ERPs %>%
  eeg_filter(.sample %>% between(10, 100))
#> Warning: between() called on numeric vector with S3 class
#> # EEG data:
#> 
#> # Signal table:
#>      .id .sample        Fp1        Fpz         Fp2         F7        F3
#>   1:   1      10  1.3453968  0.9784066   0.9915191  0.5167054  1.294869
#>   2:   1      11  0.8944145  0.6989464   0.6706013  0.3141923  1.187803
#>   3:   1      12  0.6040886  0.6183362   0.5148558  0.2213581  1.175533
#>   4:   1      13  0.6393652  0.8251486   0.5712059  0.2683778  1.125829
#>   5:   1      14  0.6229659  0.8702239   0.4580129  0.2109594  0.856599
#>  ---                                                                   
#> 178:   2      96 -6.2044331 -7.0735023  -7.9666994 -4.7888680 -7.157626
#> 179:   2      97 -6.8542360 -7.7661741  -8.5404654 -5.0099520 -7.549616
#> 180:   2      98 -7.6500746 -8.5464032  -9.1438359 -5.3012940 -7.948112
#> 181:   2      99 -8.4903757 -9.2891036  -9.6887434 -5.6585770 -8.245455
#> 182:   2     100 -9.1003648 -9.7745572 -10.0449573 -5.9597555 -8.311005
#>              Fz          F4         F8        FC5        FC1        FC2
#>   1:  1.0348515   1.3014945  0.6828880  0.8954736  0.8560441  1.1417663
#>   2:  0.8187366   1.0225348  0.6046420  0.5243376  0.7858363  0.9507665
#>   3:  0.7229266   0.8372992  0.4388520  0.2801995  0.8280230  0.9010821
#>   4:  0.7545472   0.8117911  0.2781192  0.3068408  0.9338946  0.9575513
#>   5:  0.7229803   0.7598746  0.1340346  0.4451489  0.9687350  0.9583032
#>  ---                                                                   
#> 178: -7.3566097  -8.0668550 -6.5577388 -4.2737883 -5.3454181 -6.3432451
#> 179: -7.7839888  -8.6314991 -6.9144227 -4.5030291 -5.6156640 -6.7185450
#> 180: -8.3236178  -9.3117717 -7.2599514 -5.0112831 -5.9238289 -7.1954151
#> 181: -8.8056174  -9.9382625 -7.5721603 -5.4250756 -6.1198972 -7.6251625
#> 182: -9.0592563 -10.3349649 -7.8042054 -5.3797466 -6.1769165 -7.8938038
#>             FC6          M1         T7         C3        Cz         C4
#>   1:  0.7895606  0.06817941  0.6032521  0.6552598  1.261522  0.8936008
#>   2:  0.5608169  0.07282905  0.4961458  0.7580807  1.164792  0.6866566
#>   3:  0.5196839  0.10562741  0.4652340  0.9290417  1.134783  0.6800487
#>   4:  0.6858992  0.13664664  0.5610510  1.1166178  1.151285  0.8410480
#>   5:  0.7821667  0.15361261  0.6499326  1.2277140  1.137830  0.9641131
#>  ---                                                                  
#> 178: -5.5337369 -0.59040448 -0.7877318 -2.4096150 -3.940045 -4.5402944
#> 179: -6.0568137 -0.69911547 -0.8154876 -2.5104275 -4.116004 -4.7606690
#> 180: -6.6915519 -0.79635921 -0.9614542 -2.6048798 -4.383230 -5.0564472
#> 181: -7.2091838 -0.82770322 -1.1173848 -2.5554832 -4.587345 -5.2761233
#> 182: -7.4940664 -0.81975296 -1.1313589 -2.4424482 -4.673378 -5.3337114
#>              T8          M2        CP5       CP1        CP2          CP6
#>   1:  0.9629271 -0.06817941 -0.2067426 0.4866767  0.6667189  0.366038030
#>   2:  0.9571712 -0.07282905 -0.1914062 0.4511237  0.5477906 -0.006856899
#>   3:  0.7303480 -0.10562741 -0.0334399 0.5293032  0.5738163 -0.094204161
#>   4:  0.6137383 -0.13664664  0.2441718 0.6891407  0.7240469  0.005042849
#>   5:  0.5968883 -0.15361261  0.5076659 0.8352871  0.8665894  0.081114295
#>  ---                                                                    
#> 178: -3.4675623  0.59040448  3.7645468 0.4870714 -1.8102504 -0.379987455
#> 179: -3.3439350  0.69911547  3.9285900 0.5650295 -1.8327076 -0.379132003
#> 180: -3.2614533  0.79635921  4.0816302 0.5892022 -1.9224388 -0.513803195
#> 181: -3.2517172  0.82770322  4.3064960 0.6818957 -1.9293534 -0.621128267
#> 182: -3.3742685  0.81975296  4.5349608 0.8238297 -1.8375839 -0.526162212
#>              P7         P3           Pz          P4         P8         POz
#>   1: -0.9930302 -0.7245727  0.071920581  0.02789532 -0.0161377 -0.06815066
#>   2: -0.8987255 -0.7175966 -0.038524320 -0.16931452 -0.3067263 -0.20387066
#>   3: -0.6370013 -0.5293381  0.008801139 -0.16677087 -0.3987778 -0.16345969
#>   4: -0.2289795 -0.1731266  0.208488202  0.02396739 -0.3125083  0.06343886
#>   5:  0.1695341  0.1970622  0.437265901  0.24851852 -0.1996578  0.34630682
#>  ---                                                                      
#> 178:  8.6304948  6.5282283  2.338998171  3.05993824  4.7261293  5.47519041
#> 179:  8.9975026  6.7868350  2.475995217  3.31014726  5.1161005  5.82858780
#> 180:  9.3946813  7.0155501  2.516374121  3.44846305  5.3379964  6.05109607
#> 181:  9.8027612  7.2960758  2.595623319  3.61217360  5.5657452  6.25929955
#> 182: 10.1594141  7.5967540  2.754193094  3.89719293  5.9427667  6.51835452
#>              O1          Oz          O2       EOGV      EOGH
#>   1: -0.5001492 -0.13642252 -0.22082819 -1.0579165 -1.204344
#>   2: -0.3875637 -0.20043078 -0.42623018 -1.0457333 -1.336043
#>   3: -0.1766544 -0.12743899 -0.43680681 -0.9729332 -1.420421
#>   4:  0.1205775  0.04887428 -0.26410834 -0.7443320 -1.339957
#>   5:  0.4424268  0.27030956 -0.02062588 -0.5190288 -1.130928
#>  ---                                                        
#> 178:  5.5443395  4.63258729  6.84455851 -0.3218142  2.127168
#> 179:  5.9066869  5.11834953  7.50909454 -0.3120248  2.136692
#> 180:  6.2893098  5.44335686  7.91290374 -0.3063231  2.191240
#> 181:  6.6632908  5.68131173  8.19870620 -0.2842934  2.330338
#> 182:  6.9816180  5.93042586  8.57571669 -0.2342150  2.583673
#> 
#> # Events table:
#> No events.
#> 
#> # Segments table:
#>    .id .recording condition
#> 1:   1 faces.vhdr     faces
#> 2:   2 faces.vhdr non-faces

# Compare with:
if (FALSE) {
data_faces_ERPs %>%
  eeg_filter(.sample %>% dplyr::between(10, 100))
}